
SWEN-262
Engineering of Software Subsystems
UML Class Diagrams

UML Class Diagrams

2

Pet

+ MIN_AGE: int
- name: String
- age: int
- species: Species

<<create>> Pet()
<<create>> Pet(name: String,
 age: int,
 species:Species)
+ birthday(): void
+ getAge(): int
+ adopt(name: String): void
+ getSpecies(): Species

Name

Attributes/State

Operations/
Behavior

● The Unified Modeling Language (UML) is
the standard used to diagram
object-oriented software systems.

● While UML can be used to diagram many
different aspects of a software system, the
most common diagram is a class diagram.

● Boxes partitioned into three parts are used
to describe each class including:

○ The class name, its attributes (fields), and its
operations (methods).

● Visibility is specified for each attribute and
operation:

○ + public
○ - private
○ # protected

A Closer Look at UML Class Diagrams

3

Pet

+ MIN_AGE: int
- name: String
- age: int
- species: Species

<<create>> Pet()
<<create>> Pet(name: String,
 age: int,
 species:Species)
+ birthday(): void
+ getAge(): int
+ adopt(name: String): void
+ getSpecies(): Species

A Closer Look at UML Class Diagrams

4

Pet

+ MIN_AGE: int
- name: String
- age: int
- species: Species

<<create>> Pet()
<<create>> Pet(name: String,
 age: int,
 species:Species)
+ birthday(): void
+ getAge(): int
+ adopt(name: String): void
+ getSpecies(): Species

Classes in a UML class diagram are
represented by boxes divided into
three parts.

The class name is written in the
topmost partition.

The attributes (fields) are listed in the
middle partition.

Attributes are shown in with the name
first followed by the type, e.g.
age: int

Static attributes are underlined and by
convention are named in UPPERCASE.

The operations (methods) re listed in
the bottom partition.

Any parameters are shown with the
name first followed by the type, e.g.
name: String

The return value is listed after the
method declaration, e.g.
getAge(): int

Constructors are marked with the
<<create>> annotation.

Visibility is indicated using + (public),
- (private), or # (protected).

5

UML - Relationships ● In addition to describing individual classes, UML is
used to describe the relationships that exist
between classes.

○ A relationship between two classes indicates that
the classes use each other in some way.

● Relationships are represented using a line that
connects the two classes.

○ The lines may be solid or dashed.
○ A solid line indicates a stronger relationship.

● Relationships may also include an arrow that
indicates directionality.

○ The arrow points from a class to the class that it
uses.

○ If there is no arrow, the relationship is undirected
meaning that the classes use each other.

● Class diagrams and relationships form a more
complete picture of how all the components relate
to each other.

○ The association syntax is very important, using the
wrong ones is like using the wrong grammar or
punctuation in a sentence; it totally changes the
meaning, e.g. "Let's eat Grandma!" vs "Let's eat,
Grandma."

UML includes several different kinds of associations,
each of which has a different meaning.

A relationship.

Professional software developers are expected to
be able to implement code based on UML class
diagrams.

Basic UML Relationships

6

An association usually indicates that
class A has a field of type B.

Note the solid line and that the arrow
points from A to B because A needs B
(not the other way around).

A dependency is weaker than an
association and indicates that A uses B in
some way, e.g. as a parameter or a return
value but B is not part of the state of A.

Note the dashed line and that the arrow
points in the direction of dependency: A
depends on B (not the other way around).

These kinds of arrows are never used
in UML class diagrams.

The absence of an arrow indicates that
the association is undirected - both
classes use each other.

A dependency may also be undirected if
both classes use each other. In that case
there is no arrow on the dashed line.

More UML Notation

Simple enumerations are tagged
using guillemets (<< >>).

The enumerated values are listed
below the name and the box for
operations is omitted.

The values in an enum are
constants. Constants are
underlined in UML class diagrams.

Complex enumerations typically
declare fields and methods. These
should be shown in the diagram.

Interfaces and abstract classes are
tagged using guillemets.

Abstract methods are shown in
italics.

More UML Relationships

The arrow points from the child
class to the parent class. In this
case child B extends parent A.

The formal name for this
relationship is specialization
because B is a more specialized
class than A.

Inheritance is indicated with a solid
line with a white arrowhead.

Interface inheritance is indicated
with a dashed line with a white
arrowhead.

The formal name for this
relationship is realization because
class B is real (or concrete)
implementation of interface A.

If one class contains another as part of its
state, an aggregation relationship is
indicated with a white diamond.

Multiplicity should be indicated if it is
known. In this case, 1 Library contains
zero or more Books.

Composition is indicated with a black
diamond. It is like aggregation except, in
this case, Song cannot exist without an
Album to contain it.

Things to Avoid

Submitting screenshots of your
diagrams. Save them as an image file.

Angled lines or lines with unnecessary
bends.

…or arrows that don't
quite connect.

Overlapping dashed lines
that turn solid…

In general, anything that
makes your diagrams
look sloppy, rushed, or

unprofessional.

More Things to Avoid

This…

